A Log-Barrier Method With Benders Decomposition For Solving Two-Stage Stochastic Programs

نویسنده

  • Gongyun Zhao
چکیده

An algorithm incorporating the logarithmic barrier into the Benders decomposition technique is proposed for solving two-stage stochastic programs. Basic properties concerning the existence and uniqueness of the solution and the underlying path are studied. When applied to problems with a nite number of scenarios, the algorithm is shown to converge globally and to run in polynomial-time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse

Zhao [28] recently showed that the log barrier associated with the recourse function of twostage stochastic linear programs behaves as a strongly self-concordant barrier and forms a self concordant family on the first stage solutions. In this paper we show that the recourse function is also strongly self-concordant and forms a self concordant family for the two-stage stochastic convex quadratic...

متن کامل

Two-stage Stochastic Programing Based on the Accelerated Benders Decomposition for Designing Power Network Design under Uncertainty

In this paper, a comprehensive mathematical model for designing an electric power supply chain network via considering preventive maintenance under risk of network failures is proposed. The risk of capacity disruption of the distribution network is handled via using a two-stage stochastic programming as a framework for modeling the optimization problem. An applied method of planning for the net...

متن کامل

Two-Stage Stochastic Semidefinite Programming and Decomposition Based Interior Point Methods: Theory

We introduce two-stage stochastic semidefinite programs with recourse and present a Benders decomposition based linearly convergent interior point algorithms to solve them. This extends the results in Zhao [16] wherein it was shown that the logarithmic barrier associated with the recourse function of two-stage stochastic linear programs with recourse behaves as a strongly self-concordant barrie...

متن کامل

A Benders\' Decomposition Based Solution Method for Solving User Equilibrium Problem: Deterministic and Stochastic Cases

The traffic assignment problem is one of the most important problems for analyzing and optimizing the transportation network to find optimal flows. This study presented a new formulation based on a generalized Benders' decomposition approach to solve its important part, i.e. user equilibrium problems, in deterministic and stochastic cases. The new approach decomposed the problem into a master p...

متن کامل

A Hybrid Benders' Decomposition Method for Solving Stochastic Constraint Programs with Linear Recourse

We adopt Benders’ decomposition algorithm to solve scenariobased Stochastic Constraint Programs (SCPs) with linear recourse. Rather than attempting to solve SCPs via a monolithic model, we show that one can iteratively solve a collection of smaller sub-problems and arrive at a solution to the entire problem. In this approach, decision variables corresponding to the initial stage and linear reco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999